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Momentum density is quite insensitive to some 
features of the wave function, such as polarization and 
atomic differentiation, and it is proposed to generalize the 
method to a simultaneous refinement of the wave 
function based on several independent experiments 
(Compton, Bragg diffraction, spectroscopy, magnetic 
diffraction etc.). 
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Abstract 

Invariants are those properties by which objects (in 
chemistry, physics, mathematics etc.) are commonly 
identified. They remove sensitivity to presentation and 
allow the intrinsic properties of the object to be seen. 
Invariants used for unit-cell comparison and for Bravais- 
lattice identification are reviewed, and proposals are 
made for possible directions of future research. The 
results of an exhaustive search for polynomial invariants 
of the components of the metric tensor through degree 12 
are that polynomials in the volume squared are the only 
non-trivial such invariants. 

Introduction 

If some infinitesimal changes in an object cause 
discontinuous change in an invariant, then that invariant 
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may be useful for identifying a particular object, but it 
will be useless for examining a neighborhood of that 
object. We shall call such invariants (those that under 
some conditions have discontinuous change) unstable. 
For the identification of crystallographic lattices, stable 
invariants are needed (Andrews, Bemstein & Pelletier, 
1980; Andrews & Bernstein, 1988). In this paper, we 
review some stable invariants of Bravais lattices. The 
results of an exhaustive search for polynomial invariants 
of the components of the metric tensor through degree 12 
are that polynomials in the volume squared are the only 
non-trivial such invariants. 

It is important to realize that there is a difference 
between the symmetry of the lattice and the symmetry of 
the contents of the unit cell. In this paper (and in reduced- 
cell studies in general), one considers only the symmetry 
of the lattice (the so-called metric symmetry). Such a 
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focus can prevent the erroneous assignment of less- 
symmetrical Bravais lattices in many cases. While this 
can then cause difficulties in refinement, no better 
alternative is known than first to correctly identify the 
possible symmetries of the lattice and then to consider 
the contents of the cell later as described by Stout & 
Jensen (1989, p. 141). For a recent review of these 
methods, see Andrews & Bernstein (1988). 

Although there is a great deal of implicit use of 
invariants in lattice studies, little discussion of the merits 
of particular invariants exists in the literature since the 
early work of Seeber (1831; cited by Engel, 1989). In 
fact, much of the confusion in the literature concerning 
the determination of correct Bravais lattices is due to the 
treatment of unstable invariants and non-invariants as if 
they were stable invariants (see the review by Andrews, 
Bernstein & Pelletier, 1980). In this paper, we have 
concentrated on numerical invariants. Another class of 
invariants is the non-numerical invariants (often called 
labels). An example of this class is the names of the 
Bravais lattices. A triclinic lattice might well be nearly 
cubic but still it would be triclinic. 

a .  a, b.  b and c. c) are stable. Those inner products 
between different vectors are unstable invariants (An- 
drews, Bernstein & Pelletier, 1980). Similar work by 
Patterson & Love (1957) on the Delaunay reduction has 
shown unstable behavior for it. 

Seeber's (1831) analysis included the presentation of 
what is now termed the reciprocal lattice. Since this 
lattice and the real lattice are derivable from one another, 
the invariants of one are effectively invariants of the 
other. Andrews, Bemstein & Pelletier (1980) cite the 
edge lengths of the reduced reciprocal cell as three 
additional stable invariants useful in some applications. 
Their use is equivalent to using the areas of linearly 
independent cell faces in real space. The recent 
rediscovery by Rodgers & Le Page (1992) of these 
additional invariants demonstrates both their utility and 
the importance of investigating invariants themselves. 

Although not obviously useful for identification of 
particular lattices, the recent work of Paciorek & Bonin 
(1992) describes the invariant projectors of the various 
subspaces (in G 6) o f  the Niggli-reduced cells of the 
Bravais lattices. 

E a r l i e r  i n v a r i a n t s  

It is widely understood that the volume of any primitive 
unit cell of a lattice is a stable invariant of that lattice. 
The volume, being the square root of the determinant of 
the metric tensor (a positive-def'mite symmetric matrix), 
is inherently stable. Other commonly cited invariants are 
those derived from the properties of the edge vectors 
of reduced cells. In the Niggli formalism (Burzlaff, 
Zimmermann & de Wolff, 1983), the lengths of the edges 
of the reduced cell (a, b, c) and the angles between them 
are encoded as the vector inner products a .  a, b.  b, c. c, 
b.  c, a .  c and a.  b, which are also the elements of the 
metric tensor: 

i . a  a . b  a . c )  b b . b  b c . 
c b . c  c c  

Another presentation of the same information is the G 6 
formalism introduced by Andrews & Bernstein (1988): 

a . a  

b - b  

e . g  

g = 2 b . e  " 

2 a .  c 

2 a .  b 

Apparently, the first reference in the crystallographic 
literature to these invariants is by Seeber (1831), who 
demonstrated that the three shortest non-coplanar lattice 
vectors formed a basis for a lattice. The lengths of these 
vectors are, of course, invariants of the lattice; however, 
only those quantities not dependent on angles (that is, 

N e w  s t a b l e  i n v a r i a n t s  

A productive method of searching for new stable 
invariants is to explore various extremal measures of 
lattices. Owing to the infinite extent of lattices, 
minimization is usually most productive. It is tempting 
to avoid the combinatorial nature of computations of 
minima. Therefore, one also considers polynomial and 
other closed-form algebraic invariants, such as rational 
invariants. The stable invariants cited above are all such 
minimal measures. The volume is additionally a poly- 
nomial invariant. The length of a is the shortest non-zero 
length in a lattice. We list here several suggestions for 
useful stable invariants. 

(1) An invariant related to some invariants already in 
use is the surface area of the primitive cell with minimal 
surface area. This cell is the cell reciprocal to the reduced 
reciprocal cell. This choice of cell is somewhat related 
to the proposal of Gruber (1978), who distinguished 
ambiguous reduced cells by choosing the one with 
minimal area as the reference one. 

(2) The length of the shortest G 6 vec tor  among the 
cells of a lattice is a new invariant that derives from new 
investigations of representations of lattices (Andrews & 
Bernstein, 1988). In many cases, but not all, the shortest 
G 6 vec to r  corresponds to that of the reduced cell. 

(3) The eigenvalues of the metric tensor (for primitive 
cells) provide another place to search for stable 
invariants. Because the product of the three eigenvalues 
is always the square of the volume of the cell, there are 
strong bounds on these values. Two appropriate 
candidates are the largest minimal eigenvalue and the 
smallest maximal eigenvalue that can be found by 
searching among the cells of a lattice. 
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(4) A stable invariant actually in use for a different 
purpose is the quantity that is minimized during the 
Delaunay reduction. For any basis set of vectors and the 
negative of their vector sum, the sum of the six inner 
product of these four vectors is minimized. Although the 
Delaunay reduced cell is not stable to perturbation, the 
'Delaunay sum' is stable. 

(5) A more difficult, but possibly fruitful, area of 
research is among various physical analyses of inferred 
physical properties such as the areas of minimal surfaces 
[analogous to soap films; see, for example, the work of 
Hyde (1989)], maximal or minimal areas and volumes of 
inscribed spheres and polyhedra, and possibly elastic 
properties and the corresponding normal modes (that is, 
eigenvalues and eigenfunctions of vibrations) of lattices. 

(6) Returning to polynomial invariants, one can do an 
exhaustive search by defining an invariant with variable 
coefficients and requiring it to remain unchanged under 
the operations of the modular group (that is, operations 
that convert one cell of a lattice into another). We have 
performed that exhaustive numerical search through 
degree 12. Only polynomials in the square of the volume 
remained. It is the nature of the G 6 representation for the 
square of the volume (rather than the volume) to appear. 
We conjecture that going to higher-degree polynomials 
will not produce additional types of invariants. It remains 
a topic for additional research to see whether the more 
computationally intensive search for rational invariants 
will be productive. 

F u t u r e  d i rec t ions  

Another source of invariants in mathematics is fixed 
points under some set of transformations. An example is 
the set of Bravais lattices, which 'are fixed subspaces 
within the space of unit cells. For example, exchange of 
edges does not change the fact that a cell is cubic. The 
extremal invariants mentioned above are also fixed 
points. The advantage of looking beyond extremal 
solutions to other fixed-point solutions that cannot be 
approached continuously is that we can find isolated 
solutions that appear useful only as labels. However, we 
will now consider ways to combine transformations with 
unstable invariants in order to achieve effectively stable 
invariants. As a simple example, we will consider a pair 
of primitive monoclinic cells: 

(10, 10.1, 10, 90, 95, 90) and (10, 9.9, 10, 90, 95, 90). 

The Niggli reduced cells are: 

(10, 10, 10.1, 90, 90, 95) and (9.9, 10, 10, 95, 90, 90), 
respectively. 

Although the two lattices are obviously similar, the 
reduced cells do not easily show the relationship 
(remember that this is only a simple example). If we 
carried along all versions of the reduced cells with 
permuted axes, then among the permutations we would 

find nearly identical cells (including the original pair). In 
this way, an effective stability can be achieved in a case 
where simpler rules lead to an apparent instability. Other 
examples of this approach applied to the study of lattices 
are in Andrews & Bernstein (1988). 

It is, however, unsatisfactory to have to replace simple 
vectors of parameters with entire families of vectors 
derived under applications of families of transformations. 
The computational complexity of working with these 
families is very large, making simple distance calcula- 
tions into complex combinatorial problems. A highly 
desirable goal is the realization of a 'toroidal' representa- 
tion of these families of vectors, which would allow a 
single point in some space to represent all members of 
the family. A trivial example of a toroidal solution is the 
location of a point on a circle. A point can be represented 
by an angle or that angle plus 2p, plus 4p ..... giving an 
infinite family of points. However, the common toroidal 
solution is as the vector (cos Q, sin Q), which is smooth, 
continuous and single-valued. Such a single-valued 
description of lattices would be highly desirable. 
Embedding theorems from topology (Hurewicz & Wall- 
man, 1948) demonstrate that such toroidal descriptions 
exist (and that they are, in many desirable ways, linear). 
The embedding theorems tell us that it is possible to 
embed a space of dimensionality (n) within another 
higher space of dimensionality (2n + 1). How to derive 
such spaces is not clear, but they would be a considerable 
advance in the study of experimental lattices. 

Invariants are often grouped into vectors that are 
spectra of some invariant properties. An example in 
common use is the spectrum of the eigenvalues of 
matrices. An example of such invariants in crystal- 
lography would be the lengths of the reduced-cell edges. 
Other intermediate lengths could be added for finer 
discrimination. Properly composed invariant vectors can 
by themselves be diagnostic. By sorting the vector 
carefully and allowing properly for multiplicities, e.g. 
making the first element the minimal value of some 
instance of a property, the second element the minimal 
value of instances excluding the first, but listing it even if 
it assumes the scalar value that is already in the list, and 
continuing in this fashion through the list, the vector 
itself can be an invariant. Since it is unlikely that a single 
scalar value could distinguish among the Bravais lattices, 
some spectrum-like set of numbers is obviously 
necessary. The Niggli matrix could be thought of as a 
nested spectrum in which the first three values (a. a, 
b.  b, and c-c)  are a spectrum and the following three 
values ( b.  c, a .  c and a .  b) are subspectra, the ordering 
of which is subordinate to the sort order of the first three. 
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Abstract 

New analytical X-ray scattering-factor representations 
valid for the full range of sin O/~. from 0.0 to 6.0,~-1 
have been developed from fits of a linear combination of 
five Gaussians to the values of the scattering factors 
tabulated in International Tables for Crystallography 
(1992) [Vol. C. Dordrecht: Kluwer Academic Publish- 
ers]. The resulting functions for both neutral atoms and 
ions are compared with the existing parametrizations, 
which are applicable for 0.0-2.0,A,-1 and 2.0--6.0,~ -1, 
respectively. The quality of the new parametrization 
involving 11 parameters per atom (ion) compares well 
with the previous work or is even superior. Examples are 
discussed, some errors in International Tables for 
Crystallography, Vol. C are indicated and a warning is 
given that most of the previously published four 
Gaussian expansions for ions are inadequate for calcula- 
tions involving sin tg/~ > 2.0,~, -1. 

Introduction 

Isotropic X-ray scattering factors for free atoms and/or 
ions are required in numerous crystallographic calcula- 
tions, in particular in structure least-squares refinements. 
Results for distinct values of s = sin O/X obtained from 
atomic wavefunctions are compiled in International 
Tables for Crystallography, Vol. C (Maslen, Fox & 
O'Keefe, 1992), Tables 6.1.1.1 and 6.1.1.3. With the 
exception of hydrogen, all scattering-factor values are 
either derived from the calculations of Doyle & Turner 
(1968) using the wavefunctions of Coulthard (1967) or 
from those of Cromer & Waber (1968) using the 
wavefunctions of Mann (1968). The latter calculations 
are designated by an asterisk indicating a more exact 
treatment with respect to the finite size of the nucleus. 
Scattering factors for ions are either based on non- 
relativistic or relativistic Hartree-Fock calculations 

(Cromer & Mann, 1968) using the wavefunctions of 
Mann (1968) or on relativistic Dirac-Slater wavefunc- 
tions (Cromer & Waber, 1968). 

While the calculations of Doy[e& Turner were made 
for 76 elements up to s - - 6 . 0 A  -1, Cromer & Waber 
filled in the missing elements, though only for 
0 < s < 2.0,~ -~, which is sufficient for most applica- 
tions. Owing to an increasing number of applications 
requiring high-angle X-ray or electron scattering factors, 
e.g. high-resolution electron microscopy or experiments 
with v-radiation or synchrotron radiation, extended 
scattering-factor calculations for the range 2.0 < s < 
6.0,A,-i were provided by Fox, O'Keefe & Tabbernor 
(1989) and have been included into Table 6.1.1.1, which 
is the basis for the interpretation of almost any X-ray or 
electron scattering experiment. 

For a given atom and scattering-vector length, the 
corresponding scattering-factor value f(s)  must be 
calculated from the nearest entries of the appropriate 
table. In order to circumvent interpolation and to 
facilitate computational handling, several authors have 
presented analytical scattering-factor functions for the 
data available, e.g. Onken & Fischer (1968) who also 
reviewed earlier studies. The most frequently used 
representations to date are those developed by Doyle & 
Turner (1968) who used linear combinations of four 
Gaussians: 

4 

f(s)  = ~ aiexp(-bi s2) + c. (1) 
i = i  

These have been found to give close fits to the tabulated 
values up to Sma x - - 2 . 0  ~ - 1 .  Equation (1) and the 
parameters a i, b i and c compiled in Table 6.1.1.4 of 
International Tables for Crystallography (1992), Vol. C 
can be easily implemented in programs, e.g. the recently 
released SHELXL-93. One interesting application of the 
analytical scattering functions is given by Sasaki, Fujino, 
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